首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1994年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有72条查询结果,搜索用时 250 毫秒
51.
rbcL sequence data revealed that the putative intergeneric hybrid, Diplazium tomitaroanum Masam. belongs in Deparia, as also does Diplazium subsinuatum (Wall, ex Hook, et Grev.) Tagawa, one of the putative parents. An examination of rachis, scale and spore morphology, and chromosome data provide support for this placement. We propose a new taxonomic treatment of the two Diplazium species as Deparia. Received 7 December 1999/ Accepted in revised form 15 February 2000  相似文献   
52.
Summary The change in the -glucoside permease activity of baker's yeast, Saccharomyces cerevisiae, has been followed in the presence of maltose and/or glucose in the medium. Three separate effects of glucose on the permease were distinguished: an immediate effect that apparently involves a conformational transformation of the permease, an inactivation of the permease before the initiation of growth, and a repression and derepression of the synthesis of permease. Conceivable mechanisms for regulation of the glucose effects are briefly discussed.  相似文献   
53.
New somatic chromosome numbers for nine species eight families and eight gen era in the Sino-Japanese Region are reported here as shown in Table 1. Data of six genera are previously unknown cytologically. The bearings of these new data on the systematics and evolution of the related species, genera or families are discussed as follows: (1) Platycarya strobilacea Sieb. et Zucc. (Juglandaceae). The chromosome number of this species is 2n=24, with a basic number of x=12, which deviates from 2n=32 occurred in Juglans, Carya, Pterocarya and Engelhardtia with the basic number x= 16. The Juglandaceae appears to be fundamentally paleotetraploid, with an original basic number of x = 6 in Platycarya and x-8 in the other four genera, although secondary polyploidy occurs in Carya. Based on the remarkable morphological differences between Platycarya and the rest seven genera of the family, Manning (1978) established two subfamilies: Platycaryoideae for Platycarya and Juglandoideae for the other genera. Iljinskaya (1990), however, recently established a new subfamily: Engelhardioideae for Engelhardtia. Lu (1982) points out that because of a great number of primitive characters occurring in Platycarya, the genus could not be derived from any other extant juglandaceous taxa but probably originated with the other groups from a common extinct ancestor. The present cytological data gives support to Manning′s treatment. We are also in favor of Lu′s supposition and suggest that basic aneuploid changes, both ascending and descending, from a common ancestor with the original basic number x=7, took place during the course of early evolution of the Juglandaceae and led to the origin of taxa with x=6 and 8. Subsequent polyploidy based on these diploids occurred and brought forth polyploids of relic nature today, whereas their diploid progenitors apparently have become extinct. (2) Nanocnide pilosa Migo (Urticaceae). The chromosome number of this Chinese endemic is 2n-24, with a basic number of x=12. An aneuploid series occurs in the Urticaceae, with x--13, 12, I1, 10, 9, 8, 7, etc. According to Ehrendorfer (1976), x = 14, itself being of tetraploid origin, is the original basic number of the whole Urticales, and descending aneuploid changes took place in the early stage of evolution of the Urticaceae and Cannabinaceae. In addition to Nanocnide, x= 12 also occurs in Australina, Hesperonide and Lecanthus, and partly in Chamabainia, Elatostema, Girardinia, Pouzolzia and Urtica. (3--4) Sedum sarmentosum Bunge and S. angustifolium Z. B. Hu et X. L. Huang (Crassulaceae). The former is a member of the Sino-Japanese Region, while the latter is only confined to eastern China. The chromosome number of Sedum is remarkably complex with n=4-12, 14-16…74, etc. S. angustifolium with 2n=72 of the present report is evidently a polyploid with a basic number of x =18 (9?) Previous and present counts of S. sarmentosum show infraspecific aneupolyploidy: n = c. 36 (Uhl at al. 1972) and 2n=58 (the present report). These two species are sympatric in eastern China and are morphologically very similar, yet distinguishable from each other (Hsu et al. 1983) S. sarmentosum escaped from cultivation in the United States gardens exhibited high irregularity in meiosis (Uhl et al. 1972). Uhl (pets. comm. ) suspected strongly that it is a highly sterile hybrid. R. T. Clausen (pets. comm.) found that plants of S. sarmentosum naturalized in the American Gardens propagated by means of their long stolons and broken stem tips, and could not yield viable seeds. Hsu et al. (1983) found that some of the plants of S. sarmentosum and S. angustifolium did yield a few seeds, but other did not. These species are, therefore, by the large vegetatively apomictic. (5) Glochidion puberum (L. ) Hutch. (Euphorbiaceae). The genus Glochidion includes about 300 species, but only eigth species from the Himalayas have been studied cytologically, with n= 36 and 2n= 52, having a basic number of x= 13. The present count for the Chinese endemic G. puberum establishes the tetraploid chromosome number 2n= 64, and adds a new basic number x= 16 to the genus. (6) Orixa japonica Thunb. (Rutaceae). Orixa is a disjunct Sino-Japanese monotypic genus. Out of the 158 genera of the Rutaceae, chromosome numbers of 65 genera have hitherto been investigated, of which 42 genera are with x=9 (66.61%), some with x=7, 8 and 10, and rarely with x=13, 15, 17 and 19. The present count of 2n=34 for O. japonica may have resulted from a dibasic tetraploidy of n=8+9. (7) Rhamnella franguloides (Maxim.) Weberb. (Rhamnaceae). The chromosome number of this member of the Sino-Japanese Region is 2n= 24. with a basic number of x= 12. The basic number x= 12 also occurs in Hovenia, Paliurus, Sageretia, Ceanothus and Berchemia. Hong (1990) suggested that x= 12 in Rhamnaceae may be derived from descending aneuploidy of a paleotetraploid ancestor. (8) Sinojackia xylocarpa Hu (Styracaceae). The chromosome number of this rare Chinese endemic is 2n= 24, with a basic number of x =12, which is identical with that in Halesia and Pterostyrax, but deviates from that in Styrax (x=8). The basic number x=8 in the Styracaceae may be derived from the original basic number x=7 by ascending aneuploidy in the early stage of evolution of the family, and x=12 may be derived from polyploidy. (9) Thyrocarpus glochidiatus Maxim. (Boraginaceae). The chromosome number of this Chinese endemic species is 2n=24, with a basic number of x=12. An extensive aneuploid sequence of x = 4-12 occurs in the Boraginaceae, of which x = 8, 7 and 6 are the most common. The basic number x=12 also occurs in Cynoglossum and Mertensia. It is evident that aneuploid changes, both descending and ascending, from an ancestor with x = 7, have taken place in the primary phase of evolutionary diversification of the Boraginaceae, and subsequent polyploidy has given rise to x=15, 17 and 19 in a few genera (e. g. Amsinskia and Heliotropium). The origin of x=12 is not certain. Either it be a result of ascending aneuploidy, or a product of polyploidy on the basis of x = 6. The present authors are in favorof the latter.  相似文献   
54.
BackgroundC-mannosylation is a type of protein glycosylation. Human Isthmin-1 (ISM1) is a 52-kDa secreted protein with a thrombospondin type 1 repeat (TSR) domain, containing two consensus C-mannosylation sequences at Trp223 and Trp226. In this study, we sought to examine the role of C-mannosylation in the secretion of ISM1.MethodsWe established and cultured an ISM1-overexpressing HT1080 cell line and purified recombinant ISM1 for analysis from the conditioned medium by LC-MS/MS. Subcellular localization of ISM1 was observed by confocal fluorescence microscopy.ResultsWe found that ISM1 is C-mannosylated at Trp223 and Trp226 in the TSR domain. To determine the functions of the C-mannosylation of ISM1, we established a C-mannosylation-defective mutant ISM1-overexpressing HT1080 cell line and measured its secretion of ISM1. The secretion of ISM1 decreased significantly in this mutant ISM1-overexpressing line compared with wild-type cells. Furthermore, ISM1 was N-glycosylated only in these C-mannosylation-defective cells.ConclusionsISM1 is C-mannosylated in its TSR domain, and the status of the C-mannosylation of ISM1 affects its N-glycosylation.General significanceThe C-mannosylation of ISM1 regulates its N-glycosylation status.  相似文献   
55.
BackgroundC-mannosylation is a unique type of glycosylation. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a multidomain extracellular metalloproteinase that contains several potential C-mannosylation sites. Although some ADAMTS family proteins have been reported to be C-mannosylated proteins, whether C-mannosylation affects the activation and protease activity of these proteins is unclear.MethodsWe established wild-type and mutant ADAMTS4-overexpressing HT1080 cell lines. Recombinant ADAMTS4 was purified from the conditioned medium of the wild-type ADAMTS4-overexpressing cells, and the C-mannosylation sites of ADAMTS4 were identified by LC-MS/MS. The processing, secretion, and intracellular localization of ADAMTS4 were examined by immunoblot and immunofluorescence analyses. ADAMTS4 enzymatic activity was evaluated by assessing the cleavage of recombinant aggrecan.ResultsWe identified that ADAMTS4 is C-mannosylated at Trp404 in the metalloprotease domain and at Trp523, Trp526, and Trp529 in the thrombospondin type 1 repeat (TSR). The replacement of Trp404 with Phe affected ADAMTS4 processing, without affecting secretion and intracellular localization. In contrast, the substitution of Trp523, Trp526, and Trp529 with Phe residues suppressed ADAMTS4 secretion, processing, intracellular trafficking, and enzymatic activity.ConclusionsOur results demonstrated that the C-mannosylation of ADAMTS4 plays important roles in protein processing, intracellular trafficking, secretion, and enzymatic activity.General significanceBecause C-mannosylation appears to regulate many ADAMTS4 functions, C-mannosylation may also affect other members of the ADAMTS superfamily.  相似文献   
56.
It has been reported that iron overload in β-thalassemia leads to an enhanced generation of reactive oxygen species and to oxidative stress. We have studied the oxidant/antioxidant imbalance in the blood of 48 transfusion-dependent β-thalassemic patients (TLP) (17 males, 31 females, 11–22 year), under chelation therapy, and in 40 sex and age matched healthy controls (CTR). Plasma and lymphocyte levels of vitamin E (Vit E), ubiquinol (CoQ10H2), ubiquinone (CoQ10), plasma concentrations of vitamin A (Vit A), β-carotene, lycopene, vitamin C (Vit C), total thiols, fatty acid patterns of phospholipids (PL-FA), and plasma and urinary markers of lipoperoxidation (TBA-RM, conjugated dienes, and azelaic acid (AZA), as well as the urinary levels of catecholamine and serotonin metabolites, were evaluated by gas chromatography-mass spectrometry (GC-MS), HPLC and spectrophotometry. Routine laboratory blood analyses were performed on the same samples; 39/48 TLP were HCV positive. Blood samples were collected just before transfusion, the 24 h urine samples the day before. Our results clearly showed that a severe oxidative stress occurs in the plasma of TLP in comparison with CTR. In fact, the levels of lipophilic antioxidants and ascorbate were severely depleted: CoQ10H2 (-62.5%), total CoQ10 (-35.1%), Vit E (-43.8%, β-carotene (-31.1%), lycopene (-63.7%), Vit A (-35.9%), Vit C (-23.1%). The impairment of the antioxidant status was associated with elevated plasma levels of by-products of lipoperoxidation and urinary concentrations of catecholamine metabolites and of AZA, indicating a high degree of both neurological stress and lipoperoxidation. A significant positive correlation was found between vitamin E and non-transferrin-bound iron (NTBI) (r = -0.81; p < 0.001), while no correlation was found between antioxidant depletion and ferritin serum levels, average blood consumption, or the presence of clinical complications. The administration of selective antioxidants along with an appropriate diet might represent a promising way of counteracting oxidative damage and its deleterious effects on the progression of the disease.  相似文献   
57.
Summary The intracellular ATP of baker's yeast (Saccharomyces cerevisiae) was measured using the bioluminescent firefly luciferase assay. Benzalkonium chloride and trichloro-acetic acid served in the experiments as extracting agents and optimal conditions for the extraction and assay of the intracellular ATP are reported. Using the results obtained from manually performed experiments two continuous flow systems were designed for the measurement of ATP in yeast cells during cell growth. Good correlation between the amount of cellular ATP and cell growth was found during the exponential growth phase.  相似文献   
58.
In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25), the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A), could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw’s nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC). We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients’ quality of life.  相似文献   
59.
Cathepsin V (L2), a lysosomal cysteine protease, is a member of cathepsin family, relating to cancer invasion and metastasis. Cathepsin V contains two predicted N-glycosylation sites, but it has not been reported whether cathepsin V is glycosylated or not. In this study, we clarified the role of N-glycosylation of cathepsin V for its functions. We demonstrated that cathepsin V is N-glycosylated at both Asn221 and Asn292 using mass spectrometry and site-directed mutagenesis. N-glycosylation of cathepsin V was important for transportation to lysosome, secretion, and activity in HT1080 cells. These data demonstrated that functions of cathepsin V are controlled by N-glycosylation.  相似文献   
60.
Knowledge on the chemical structure of beta2-microglobulin in natural amyloid fibrils is quite limited because of the difficulty in obtaining tissue samples suitable for biochemical studies. We have reviewed the available information on the chemical modifications and we present new data of beta2-microglobulin extracted from non-osteotendinous tissues. beta2-microglobulin can accumulate in these compartments after long-term haemodialysis but rarely forms amyloid deposits. We confirm that truncation at the N-terminus is an event specific to beta2-microglobulin derived from fibrils but is not observed in the beta2-microglobulin from plasma or from the insoluble non-fibrillar material deposited in the heart and spleen. We also confirm the partial deamidation of Asn 17 and Asn 42, as well as the oxidation of Met 99 in fibrillar beta2-microglobulin. Other previously reported chemical modifications cannot be excluded, but should involve less than 1-2% of the intact molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号